Parity dimension for graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Szeged Dimension and $PI_v$ Dimension of Composite Graphs

Let $G$ be a simple connected graph. In this paper, Szeged dimension and PI$_v$ dimension of graph $G$ are introduced. It is proved that if $G$ is a graph of Szeged dimension $1$ then line graph of $G$ is 2-connected. The dimensions of five composite graphs: sum, corona, composition, disjunction and symmetric difference with strongly regular components is computed. Also explicit formulas of Sze...

متن کامل

The metric dimension and girth of graphs

A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...

متن کامل

Parity-regular Steinhaus graphs

Steinhaus graphs on n vertices are certain simple graphs in bijective correspondence with binary {0,1}-sequences of length n−1. A conjecture of Dymacek in 1979 states that the only nontrivial regular Steinhaus graphs are those corresponding to the periodic binary sequences 110...110 of any length n − 1 = 3m. By an exhaustive search the conjecture was known to hold up to 25 vertices. We report h...

متن کامل

Metric Dimension for Random Graphs

The metric dimension of a graph G is the minimum number of vertices in a subset S of the vertex set of G such that all other vertices are uniquely determined by their distances to the vertices in S. In this paper we investigate the metric dimension of the random graph G(n, p) for a wide range of probabilities p = p(n).

متن کامل

Fractal Dimension of Graphs of Typical Continuous Functions on Manifolds

If M is a compact Riemannian manifold then we show that for typical continuous function defined on M, the upper box dimension of  graph(f) is as big as possible and the lower box dimension of graph(f) is as small as possible.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1998

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(97)00242-2